The non-invasive Berlin Brain-Computer Interface: Fast acquisition of effective performance in untrained subjects
نویسندگان
چکیده
Brain-Computer Interface (BCI) systems establish a direct communication channel from the brain to an output device. These systems use brain signals recorded from the scalp, the surface of the cortex, or from inside the brain to enable users to control a variety of applications. BCI systems that bypass conventional motor output pathways of nerves and muscles can provide novel control options for paralyzed patients. One classical approach to establish EEG-based control is to set up a system that is controlled by a specific EEG feature which is known to be susceptible to conditioning and to let the subjects learn the voluntary control of that feature. In contrast, the Berlin Brain-Computer Interface (BBCI) uses well established motor competencies of its users and a machine learning approach to extract subject-specific patterns from high-dimensional features optimized for detecting the user's intent. Thus the long subject training is replaced by a short calibration measurement (20 min) and machine learning (1 min). We report results from a study in which 10 subjects, who had no or little experience with BCI feedback, controlled computer applications by voluntary imagination of limb movements: these intentions led to modulations of spontaneous brain activity specifically, somatotopically matched sensorimotor 7-30 Hz rhythms were diminished over pericentral cortices. The peak information transfer rate was above 35 bits per minute (bpm) for 3 subjects, above 23 bpm for two, and above 12 bpm for 3 subjects, while one subject could achieve no BCI control. Compared to other BCI systems which need longer subject training to achieve comparable results, we propose that the key to quick efficiency in the BBCI system is its flexibility due to complex but physiologically meaningful features and its adaptivity which respects the enormous inter-subject variability.
منابع مشابه
Selecting and Extracting Effective Features of SSVEP-based Brain-Computer Interface
User interfaces are always one of the most important applied and study fields of information technology. The development and expansion of cognitive science studies and functionalization of its tools such as BCI1, as well as popularization of methods such as SSVEP2 to stimulate brain waves, have led to using these techniques every day, especially in appropriate solutions for physically and menta...
متن کاملThe Feasibility of Using Wearable Functional Near-Infrared Spectroscopy (fNIRS) to Study Hemodynamic Response during Mental Arithmetic Task
Functional near-infrared spectroscopy (fNIRS) is the promising non-invasive technique for brain-computer interface (BCI) for brain signal acquisition. Wearable multi-channel fNIRS devices that can provide much comport for applications and researches are commercially available in the market recently. In this study, we research possibility of the wearable multi-channel fNIRS device by evaluating ...
متن کاملComparison of Different Linear Filter Design Methods for Handling Ocular Artifacts in Brain Computer Interface System
Brain-computer interfaces (BCI) record brain signals, analyze and translate them into control commands which are relayed to output devices that carry out desired actions. These systems do not use normal neuromuscular output pathways. Actually, the principal goal of BCI systems is to provide better life style for physically-challenged people which are suffered from cerebral palsy, amyotrophic l...
متن کاملEEG-Based Control of Reaching To Visual Targets
Research on non-invasive brain computer interfaces (BCI) has shown that electroencephalograhy (EEG) on-line signal extraction can be used for communication (spelling), computer game playing and for sensorassisted navigation. In this study we attempt to quantify reaching movement performance using EEG and gaze tracking signals. To achieve this the Berlin Brain Computer Interface has been linked ...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 37 2 شماره
صفحات -
تاریخ انتشار 2007